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Abstract— In this paper the faults diagnosis of induction 
machines based on the discrete wavelet transform (DWT) is 
detailed. The wavelet decomposition is used to extract the 
information from a signal over a wide range of frequencies.  This 
analysis is performed in both time and frequency domains. The 
Daubechies wavelet is selected for the analysis of the stator 
current. Wavelet components appear to be useful for detecting 
different electrical faults. In this paper we will study the problem 
of broken rotor bars, and end-ring segment. 
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I. INTRODUCTION 

The induction machines were dedicated for electric drives 
and play an important role in manufacturing environments. 
Therefore this type of machines is generally considered and 
several diagnostic procedures are proposed in the literature 
[l]–[10]. 

Specific uses of induction machines do not tolerate 
inopportune breakdowns. These breakdowns can be due to the 
machine and can be of mechanical origin (rotor eccentricity, 
coupling defect, bearings defects, etc…) or electric and 
magnetic origin (short circuit in stator windings, broken bars, 
broken end-ring or broken teeth).   

Wavelet transform is an analysis method for time varying 
or non-stationary signals, and uses a description of spectral 
decomposition via the scaling concept. Wavelet theory 
provides a unified framework for a number of techniques 
which have been developed for various signal processing 
applications [10]–[18]. One of its feature is multi-resolution 
signal analysis with a vigorous function of both time and 
frequency localization. This method is effective for stationary 
signal processing as well as non-stationary signal processing. 
References [19],[20] describe the pyramidal algorithm based 
on convolutions with quadrature mirror filters which is a fast 
method similar to FFT (Fast Fourier Transform) for signal 
decomposition and reconstruction. It can be interpreted as a 
decomposition of the original signal in an orthonormal 
wavelet basis or as a decomposition of the signal in a set of 
independent frequency bands. This independence is due to the 
orthogonality of the wavelet functions [21].  

In this paper, a method for the diagnosis of broken rotor 
bars and broken end is described. Several experiments are 
developed for different fault cases and operating conditions 
such as healthy rotor, one broken bar, two broken bars, and 
one end-ring portion broken. The experiments have been 
especially done at the laboratory on four constructed machines 
for diagnosis purposes.  

II. DESCRIPTION OF THE WAVELET METHOD 

The wavelet method requires the use of time-frequency 
basis functions with different time supports to analyze signal 
structures of different sizes. The wavelet transform, an 
extension of the Short-time Fourier Transform, projects the 
original signal down onto wavelet basis functions and 
provides a mapping from the time domain to the time-scale 
plane. 

A wavelet is a function belonging to L2(R) with a zero 
average. It is normalized and centered on the neighborhood of    
t = 0.  A time-frequency atom family is obtained by scaling a 
band pass filter ψ by s and translating it by u.  

L2(R) represents the space vector of measurable square-
integrable functions on the real line R with 1  . 
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The wavelet transform of a function f at the scale s and 
position u is computed by correlating f with a wavelet atom: 
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A real wavelet transform is complete and conserves energy as 
long as it satisfies a weak admissibility condition: 
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When Wf(u,s) is known only for s<s0, we need to 
recover f, a complement of information  corresponding  to 
Wf (u,s) for s>s0.  This is obtained by introducing a scaling 
function φ that is a wavelets aggregate at scales larger than 
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1. In the sequel, we design by ˆ ( )   and ˆ ( )   the Fourier 

transforms of ( n )  and ( n ) , respectively.   

When Wf (u, s) is known only for s<s0, we need to 
recover  f , a complement of information corresponding to 
Wf (u, s) for s>s0.  This is obtained by introducing a scaling 
function φ that is a wavelets aggregate at scales larger than 

1. In the sequel, we design by ˆ ( )   and ˆ ( )   the Fourier 

transforms of ( n )  and ( n )  , respectively.   

The discrete wavelets transform results from the 
continuous version. Unlike this latter, the DWT uses a 
discrete scale factor and a translation. One calls discrete 
wavelet transform dyadic into any base of wavelet working 

with a scale factor   
j

u 2 . 
The discrete version of Wavelet Transform, DWT, 

consists of sampling neither the signal nor the transform but 
sampling the scaling and shifted parameters, [25-27]. This 
results in high frequency resolution at low frequencies and 
high time resolution at high frequencies, removing the 
redundant information. Taking positive frequency into 

account, ˆ ( )  has information in [0, π] and ˆ ( )   in [π, 

2π]. Therefore they both have complete signal information 
without any redundancy. Functions h(n) and g(n) can be 

obtained by inner product of ( t )  and ( t ) . 

Decomposition of the signal in    [0, π] gives [10]: 
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Wavelet decomposition does not involve the signal in        

[π, 2π]. In order to decompose the signal in the whole 
frequency band, wavelet packets can be used. After 
decomposing l times, we get 2l frequency bands each with 
the same bandwidth that is: 

ln n(i l ) f if
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where fn is the Nyquist frequency, in the ith-frequency band. 
Wavelet packets decompose the signal into one low-pass 
filter h(n) and (2l -1) band-pass filters g(n), and provide 
diagnosis information in 2 frequency bands. Aj is the low 
frequency approximation and Dj is the high frequency detail 
signal, both at the resolution j: 
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where A0(k) is the original signal. After decomposing the 
signal, we obtain one approximation signal Aj and Dj detail 
signals (see Fig.1). 

 
Fig.1. Tree decomposition of the signal S 

The wavelet packets method is a generalization of 
wavelet decomposition that offers a richer range of 
possibilities for signal analysis (see Fig.2).  In wavelet 
analysis, a signal is split into an approximation and a detail. 
Then the approximation is itself split into a second-level 
approximation and detail, and the process is repeated [23] 
till the targeted results are obtained. For n-level 
decomposition, there are n+1 possible ways to decompose 
or encode the signal: 

W ( t ) 2 h( k )W ( 2 t k )2 n n

k

W ( t ) 2 g ( k )W ( 2 t k )2 n 1 n

k
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
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Fig.2 Decomposition of the signal S in wavelet packet 

 
where W (t) is the original signal. By comparing Eqs. (8) 
With Eqs. (7), we can find that only Aj in Eq. (7) is 
decomposed but also Dj in Eq.(8) is decomposed.  

Wavelets and wavelet packets decompose the original 
signal which is non-stationary or stationary into independent 
frequency bands with multi-resolution [23]. 

III. EXPERIMENTAL TESTS 

A. Motor Current Signature Analysis 

Four rotors have been  used in  the tests  as  shown    in  
Fig. (3). In order to obtain correct resolution for the wavelet 
analysis, it is important   to choose correctly the acquisition 
parameters, i.e. the sampling frequency and number of 
samples. Some constraints are also taken into consideration:  

 Analyzed signal bandwidth, 
 Wavelet decomposition spectral bands, 
 Frequency  resolution, 
 Appropriate number of decomposition. 
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Fig.3. Faulty rotors under tests 

 
For an induction machine, the significant information in 

stator current signal is concentrated the 0-400 Hz band. 
Applying the Shannon’s theorem, yields minimum sampling 
frequency fs of 800Hz.   

The minimum resolution needed to get a good result is     
0.5 Hz. Eq. (9) defines the number of samples, Ns, needed for 
a given resolution R, [19]–[21]. 

f sN s
R

                                         (9) 

In our case, we have chosen a sampling frequency  fs =10 
kHz to obtain a good frequency resolution.  Hence, Ns 

=100000 samples are acquired for R=0.1Hz. The analyzing 
frequencies vary from 0 to 5 kHz with a resolution of 0.1Hz.  

Fig.4 shows the experimental setup where different 4kW 
induction machines are used to test the performance of the 
proposed methodology identifying different faults treated in 
this work. This system can be used to sample two line currents 
Ia and Ib, three line voltages Va ,  Vb and Vc , and a speed 
signal. The stator windings are star connected. The main parts 
of the experimental setup are as follows: 

 

 

Fig.4: Experimental setup 

 
- Three-phase 4-kW induction machine, 
- DC generator coupled to the IM to provide load, 

- PC equipped with a data acquisition (IOTEQ 
DAQ2000 SERIES ) card. 

The tested machines have two pole-pairs (p=2), 28 bars and 
receive a power supply of 220V AC at 50Hz. For the rotor 
faults the machines are tested at 75% of rated load and no load 
for the loss of stator phase test. 

We have experimented a method for the selection of 
wavelet decomposition level namely the approach presented 
in [25], the approach is based on the sampling frequency.  

B. Selection of the decomposition level 

The approach is based on: 
- A suitable number of decomposition levels (nLs) 

depend on the sampling frequency fs of the signal 
being analyzed. For each one of the proposed 
approaches [22],[24],[25] it has to be chosen in order 
to allow the high-level signals (approximation and 
details) to cover all the range of frequencies along 
which the sideband is localized. 

- The minimum number of decomposition levels that is 
necessary for obtaining an approximation signal (Anf) 
so that the upper limit of its associated frequency 
band is under the fundamental frequency [16], is 
described by the following condition: 

Ls( n 1 )
s2 f f                                             (12) 

From this condition, the decomposition level of the 
approximation signal which includes the left sideband 
harmonic is the integer nLs given by: 

Ls

log( fs / f )
n int( )

log( 2 )
                                   (13) 

For this approach, further decomposition of this signal has 
to be done so that the frequency band [0–f] will be 
decomposed in more bands. Usually, two additional 
decomposition levels (that is, nLs +2) would be adequate for 
the analysis [16].  

Ls

log(10000 / 50 )
n 2 int( ) 2

log( 2 )

int(7.64 ) 2 9 levels

  

  

                 (14)                                 

For this case the wavelet decomposition tree is showed in 
Table II. 

 
TABLE I 

FEQUENCY BANDS OBTAINED BY DECOMPOSITION IN 

MULTILEVELS 

Level Approximations Details 
J = 1 A1 0 - 5000 D1 5000 - 10000 
J = 2 A2 0 - 2500 D2 2500 - 5000 
J = 3 A3 0 - 1250 D3 1250 - 2500 
J = 4 A4 0 – 625 D4 625 - 1250 
J = 5 A5 0 - 312.50 D5 312.5 - 625 
J = 6 A6 0 - 156.25 D6 156.25 - 312.5 
J = 7 A7 0 - 78.125 D7 78.125 - 156.25 
J = 8 A8 0 -39.0625 D8 39.0625 - 78.125 
J = 9 A9 0 - 19.5313 D9 19.53 - 39.0625 

      
Several types of mother wavelets exist (Daubechies, coiflet, 

simlet, biorthogonal, etc…..) and have different properties, 
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[17]. However, some authors showed that all these types of 
mother wavelets gave similar results. Due to the well-known 
properties of the orthogonal Daubechies family, we chose to 
use a mother wavelet of this family.  

The multilevel decomposition of the stator current was then 
performed using Daubechies wavelet, the suitable level of 
decomposition is calculated according to Eq. (13). When the 
defect of the rotor bars, end-ring portion, and short-circuit on 
the stator windings of the induction motor appear, the defect 
information in stator current is included in each frequency 
band determined by the decomposition in wavelet or in 
wavelet packet. By calculating the energy associated to each 
level or with the each node of decomposition, one can build a 
very effective diagnosis tool. The energy eigenvalue for each 
frequency band is defined by [19]-[21]:   

2k n

j j ,k
k 1

E D ( n )




                              (15) 

Based on the energy eigenvalue, the eigenvector is set up as: 
l0 1 2 2 1

EE E E
T , , , .....,

E E E E


 
  
 

                  (16) 

where j=1,2…,2l-1; Dj is the amplitude in each discrete point 
of the wavelet coefficient of the signal in the corresponding 

frequency band, with 
m2 1

2

j
j 0

E E




   

The eigenvalue T contains information on the signal of the 
stator current for a motor behavior. Besides, the amplitudes of 
the deviation of some eigenvalues indicate the severity of the 
defect, which makes T a good candidate to diagnose broken 
bars of the rotor and/or defect of the end-ring portion.    

The PSD of the stator current clearly shows the increase of 
the amplitudes in relation with the defects of the rotor (1±2s)f.  
Fig (5 and 6) show the PSD of the stator current in the cases 
of healthy machine and machine with two broken bars. 

 
Fig.5. Normalized PSD of the stator current of a healthy   induction 

machine 

 

Fig.6. Normalized PSD of the stator current of an induction machine with two 
broken rotor bars 

C.   Discrete Wavelet Transform Applied to the Stator 
Current     

 The “Daubechies wavelets” of different order are used to 
decompose the stator current of each machine. Fig(9) 
represents the detail and approximation signals (D9, D8, D7 
and A6) obtained by db44.  The calculation of the energy 
eigenvector T indicates the variation of this energy in the four 
machines as shown in Figs. (8, 9 and 10) 

 
(a) 

 
(b) 

 
(c) 

 
Time(s) 

(d) 

Fig.7. Details and approximation for a) healthy, b) one broken bar, c) two 
broken bars and d) broken end-ring 

 
In Fig.7, the evolution in the observed frequency bands of 

the relative signal to the rotor defect can be analyzed using 
coefficients D9 and D8 to D7 or using only coefficient A6 that 
gives all the information in the frequency band [0-156.25Hz]. 
While analyzing the effect of the rotor defect in the bands of 
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interesting frequencies, one shows that the energy depends on 
the type of defect. For all the studied machines, the difference 
between the healthy rotor and the deficient rotors is clearly 
shown in Fig. 7. 
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Fig.8. Eigenvector analysis results obtained from db6 
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Fig.9. Eigenvector analysis obtained from db24 
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Fig.10. Eigenvector analysis results obtained from db44 

      
Fig (9 and 10) clearly show the variation of the energy 

eigenvalue. One can observe that the energy stored in band 7 
depends on the degree of the default. Obviously, the energy in 
level 7 represents the number of broken bars and the broken 
end-ring portion of the squirrel cage rotor. Fig (8, 9 and 10) 
show that the choice of the mother wavelet and its order has a 
great importance in differentiating the energies, because when 
the order of the mother wavelet is increased the difference 
between the energy eigenvalues becomes clearer.  

The band of detection of broken rotor bars can’t be 
influenced by mechanical vibrations and load effect because 
the frequencies accompanying the mechanical problem are 
very far from the band of detection which is located in [39.06- 
78.12]Hz. The broken bar and end-ring portion induce 
supplementary frequencies near the fundamental component 
which are described by (1±2s)f. These frequencies are 
influenced only by the operating frequency f and the slip s, 
however this method is not dependent on the motor power, but 
we must choose the appropriate band and the decomposition 
of the stator current.  

D.  Application to Residual Stator Current 

The extraction of the fundamental component leads to a 
signal full of in information. Indeed the elimination of the 
dominant component in the stator current contributes to 
amplify the components due to defects. For this reason we 
make the stator current go through a band-pass filter to 
elimination the 50Hz frequency. This method produces 
attenuation in some components. 

Fig (11 and 12) represent the variation of the energy 
eigenvalue.  
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Fig.11. Eigenvector analysis results obtained from db24 

 

Fig.12. Eigenvector analysis results obtained from db6 

 
Looking at Fig (11) and (12), one can note that the 

extraction of the fundamental has a very significant effect on 
the diagnosis of defaults. This effect is interpreted by the 
increase in the amplitudes of the signals in bands D7 and A6, 
in the case of defect compared to the healthy case. The effect 
of the extraction also led to a differentiation in the energies 
stored in the levels between the various machines not only in 
level 7 but in levels 1, 2, 3, 4, 5, 6 as well 7. According to the 
previous results, one can also note that the effect of the broken 
rotor bar is similar to that of a broken end-ring portion.   

IV. CONCLUSION 

Signal decomposition via wavelet transform and wavelet 
packets provides a good approach of multi-resolution analysis. 
The decomposed signals are independent due to the 
orthogonality of the wavelet function. There is no redundant 
information in the decomposed frequency bands. 

Based on the information from a set of independent 
frequency bands, mechanical condition monitoring and fault 
diagnosis can be effectively performed.  

This work shows a new approach in detection of broken 
rotor bars in induction motor having only stator currents as 
input. The detection is based on the Discrete Wavelet 
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Decomposition method. The results show the effectiveness of 
the proposed method for this kind of fault.  

MCSA is a good method for analyzing motor faults over 
constant load torque. But in the case of non constant load 
torque or non-stationary signals, the use of the wavelet 
decomposition is   required.  
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